An asymptotic theory for nonlinear functional differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Asymptotic Behavior of Solutions of Nonlinear Functional Differential Equations
Using the properties of almost nonexpansive curves introduced by B. Djafari Rouhani, we study the asymptotic behavior of solutions of nonlinear functional differential equation du(t)/dt + Au(t)+ G(u)(t) f(t), where A is a maximal monotone operator in a nilbert space H,f E LI(0,:H) and G:C([O,c):D(A))LI(O,c:H)is a given mapping.
متن کاملOptimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by min...
متن کاملAsymptotic problems for fourth-order nonlinear differential equations
By a solution of () we mean a function x ∈ C[Tx,∞), Tx ≥ , which satisfies () on [Tx,∞). A solution is said to be nonoscillatory if x(t) = for large t; otherwise, it is said to be oscillatory. Observe that if λ≥ , according to [, Theorem .], all nontrivial solutions of () satisfy sup{|x(t)| : t ≥ T} > for T ≥ Tx, on the contrary to the case λ < , when nontrivial solutions satisfy...
متن کاملRandom fractional functional differential equations
In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2002
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(02)00189-x